We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded $\pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gine (1993) who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein's type inequality where the spectral gap of the chain emerges. Our result allows us to conduct three applications. First, we establish a new exponential inequality for the estimation of spectra of trace class integral operators with MCMC methods. The novelty is that this result holds for kernels with positive and negative eigenvalues, which is new as far as we know. In addition, we investigate generalization performance of online algorithms working with pairwise loss functions and Markov chain samples. We provide an online-to-batch conversion result by showing how we can extract a low risk hypothesis from the sequence of hypotheses generated by any online learner. We finally give a non-asymptotic analysis of a goodness-of-fit test on the density of the invariant measure of a Markov chain. We identify the classes of alternatives over which our test based on the L2 distance has a prescribed power.
翻译:我们证明,对于统一ERgodic Markov 链的二号秩序的U-统计学来说,我们是一个新的集中不平等。我们与受约束的 $\pi$-canonical 内核合作,我们展示了我们可以恢复Arcones和Gine(1993年)的趋同率,后者证明是独立随机变数和卡通内核的U-统计学集中率。我们的证据依赖于一种感知分析,即我们使用martingale 技术、统一惯性、Nummelin 分裂和Bernstein 的不平等类型,在链条的光谱差距出现时,我们可以进行三种应用。我们的结果使我们得以进行三个应用。首先,我们为利用MCMC方法估算追踪级整体操作者的光谱度估计,我们建立了一个新的指数性不平等。新颖的是,这一结果为具有正负等值的内核值的内核核内核核核。此外,我们还调查了在线算法的通用性功能和Markov 链样本的普及性表现。我们提供了一个在线转换结果,通过显示我们如何从在线测算出一个不那么的内核的内核的内核标准的测测测测测度序列。