We show the existence of universal, variable-rate rate-distortion codes that meet the distortion constraint almost surely and approach the rate-distortion function uniformly with respect to an unknown source distribution and a distortion measure that is only revealed to the encoder and only at run-time. If the convergence only needs to be uniform with respect to the source distribution and not the distortion measure, then we provide an achievable $\tilde{O}(1/\sqrt{n})$ minimax rate of convergence. A converse result is also given showing that under minimax guarantees, one can do no better than $\Omega(1/\sqrt{n})$. Our construction combines conventional random coding with a zero-rate uncoded transmission scheme. The proof uses exact asymptotics from large deviations, acceptance-rejection sampling, the VC dimension of distortion measures, and the identification of an explicit, code-independent, finite-blocklength quantity, which converges to the rate-distortion function, that controls the performance of the best codes.
翻译:我们展示了符合扭曲限制的普遍、可变率扭曲代码,几乎可以肯定地满足了这些代码的存在,并在未知源分布和扭曲计量方面一致对待了率扭曲功能,这一功能只向编码器披露,而且只是在运行时才披露。如果趋同只需要在源分布而不是扭曲计量方面保持统一,那么我们就会提供一个可以实现的 $\tilde{O}(1/\sqrt{n}) 美元微量趋同率。另一个相反的结果是,在微型保证下,人们无法比美元(1/\sqrt{n})好。我们的构造将常规随机编码与零速率的无编码传输计划结合起来。证据使用了从大偏差、接受-喷射取样、扭曲措施的VC层面的精确偏差,以及确定一个明确、不受代码约束、有限阻断量(这与比率-扭曲功能一致),从而控制了最佳代码的性能。