Normalizing flows are objects used for modeling complicated probability density functions, and have attracted considerable interest in recent years. Many flexible families of normalizing flows have been developed. However, the focus to date has largely been on normalizing flows on Euclidean domains; while normalizing flows have been developed for spherical and other non-Euclidean domains, these are generally less flexible than their Euclidean counterparts. To address this shortcoming, in this work we introduce a mixture-of-normalizing-flows model to construct complicated probability density functions on the sphere. This model provides a flexible alternative to existing parametric, semiparametric, and nonparametric, finite mixture models. Model estimation is performed using the expectation maximization algorithm and a variant thereof. The model is applied to simulated data, where the benefit over the conventional (single component) normalizing flow is verified. The model is then applied to two real-world data sets of events occurring on the surface of Earth; the first relating to earthquakes, and the second to terrorist activity. In both cases, we see that the mixture-of-normalizing-flows model yields a good representation of the density of event occurrence.


翻译:标准化流动是用于模拟复杂概率密度功能的物体,近年来引起了相当大的兴趣。许多正常流量的灵活组合已经形成。不过,迄今为止,重点主要放在了欧几里地域的正常流量上;虽然为球体和其他非欧几里地域开发了正常流量,但这些流动通常不如欧几里地域的对等系统灵活。为解决这一缺陷,我们在这项工作中引入了混合标准化流量模型,以构建该域的复杂概率函数。该模型为现有的参数、半参数和非参数、有限混合物模型提供了灵活的替代方法。模型估算是利用预期最大化算法及其变式进行的。模型应用于模拟数据,其中对常规(单部分)正常流量的好处进行了核实。然后,模型应用于两个真实世界的地球表面发生的事件数据集;第一个与地震有关的数据集,第二个与恐怖活动有关的数据集。在这两个例子中,我们看到,混合统一流量模型生成了事件密度的良好表示。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员