Multistage design has been used in a wide range of scientific fields. By allocating sensing resources adaptively, one can effectively eliminate null locations and localize signals with a smaller study budget. We formulate a decision-theoretic framework for simultaneous multi-stage adaptive testing and study how to minimize the total number of measurements while meeting pre-specified constraints on both the false positive rate (FPR) and missed discovery rate (MDR). The new procedure, which effectively pools information across individual tests using a simultaneous multistage adaptive ranking and thresholding (SMART) approach, can achieve precise error rates control and lead to great savings in total study costs. Numerical studies confirm the effectiveness of SMART for FPR and MDR control and show that it achieves substantial power gain over existing methods. The SMART procedure is demonstrated through the analysis of high-throughput screening data and spatial imaging data.
翻译:多阶段设计用于广泛的科学领域,通过适应性地分配遥感资源,可以有效地消除空置地点,用较小的研究预算将信号本地化;我们为同时进行多阶段适应性测试制定决策理论框架,研究如何尽量减少测量的总数,同时满足对假正率(FPR)和误差发现率(MDR)预先规定的限制;新程序利用同时进行的多阶段适应性排位和阈值(SMART)方法,有效地将各个测试的信息集中起来,可以实现精确的误差率控制,从而节省大量研究费用;数字研究证实SMART对FPR和MDR控制的有效性,并表明它在现有方法上取得了巨大的动力;SMART程序通过分析高通量筛选数据和空间成像数据来证明。