Hierarchical spatial models are very flexible and popular for a vast array of applications in areas such as ecology, social science, public health, and atmospheric science. It is common to carry out Bayesian inference for these models via Markov chain Monte Carlo (MCMC). Each iteration of the MCMC algorithm is computationally expensive due to costly matrix operations. In addition, the MCMC algorithm needs to be run for more iterations because the strong cross-correlations among the spatial latent variables result in slow mixing Markov chains. To address these computational challenges, we propose a projection-based intrinsic conditional autoregression (PICAR) approach, which is a discretized and dimension-reduced representation of the underlying spatial random field using empirical basis functions on a triangular mesh. Our approach exhibits fast mixing as well as a considerable reduction in computational cost per iteration. PICAR is computationally efficient and scales well to high dimensions. It is also automated and easy to implement for a wide array of user-specified hierarchical spatial models. We show, via simulation studies, that our approach performs well in terms of parameter inference and prediction. We provide several examples to illustrate the applicability of our method, including (i) a high-dimensional cloud cover dataset that showcases its computational efficiency, (ii) a spatially varying coefficient model that demonstrates the ease of implementation of PICAR in the probabilistic programming languages stan and nimble, and (iii) a watershed survey example that illustrates how PICAR applies to models that are not amenable to efficient inference via existing methods.
翻译:对于生态、社会科学、公共卫生和大气科学等领域的各种应用而言,等级空间模型非常灵活,很受欢迎。通过Markov 链 Monte Carlo(MCMC)对这些模型进行巴伊西亚式的推断十分常见。由于矩阵操作成本高昂,MCMC算法的每一次迭代都计算费用昂贵。此外,MCMC算法需要运行更多的迭代,因为空间潜伏变量之间的紧密交叉关系导致马尔科夫链的缓慢混合。为了应对这些计算挑战,我们建议采用基于投影的有条件自动递增(PICAR)方法,这是利用三角网格上的经验基础函数对基础空间随机字段进行离散和尺寸降序的表示。我们的方法显示快速混合,计算成本成本成本成本的大幅降低。PICAR算法是计算效率的高度和尺度。为了广泛一系列用户指定的等级空间模型,我们通过模拟研究,表明我们的方法在精确度参数方面表现得非常好,通过三角网基的精确度和精确度的精确度预测,我们提供了一些例子,从高空基的精确度的精确度的角度,从高清晰度的精确度的精确度的精确度的精确度的精确度的精确度到精确度的精确度的精确度的计算方法。我们提供了各种的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的计算方法。我们提供方法。我们提供了各种的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的计算方法。