Ubiquitous artificial intelligence (AI) is considered one of the key services in 6G systems. AI services typically rely on deep neural network (DNN) requiring heavy computation. Hence, in order to support ubiquitous AI, it is crucial to provide a solution for offloading or distributing computational burden due to DNN, especially at end devices with limited resources. We develop an optimization framework for assigning the computation tasks of DNN inference jobs to computing resources in the network, so as to reduce the inference latency. To this end, we propose a layered graph model with which simple conventional routing jointly solves the problem of selecting nodes for computation and paths for data transfer between nodes. We show that using our model, the existing approaches to splitting DNN inference jobs can be equivalently reformulated as a routing problem that possesses better numerical properties. We also apply the proposed framework to derive algorithms for minimizing the end-to-end inference latency. We show through numerical evaluations that our new formulation can find a solution for DNN inference job distribution much faster than the existing formulation, and that our algorithms can select computing nodes and data paths adaptively to the computational attributes of given DNN inference jobs, so as to reduce the end-to-end latency.


翻译:人工智能(AI)被认为是6G系统的关键服务之一。 人工智能服务通常依赖于需要大量计算的深神经网络(DNN),因此,为了支持无处不在的AI,必须提供因DNN而卸载或分配计算负担的解决方案,特别是在资源有限的终端设备上。我们开发了一个优化框架来分配DNN推论工作的计算任务,以计算网络中的资源的计算任务,从而减少误差。为此,我们提议了一个分层图解模型,通过这个图解模型,简单的常规路径共同解决选择计算节点和节点之间数据传输路径的节点问题。我们表明,使用我们的模型,将DNNN的推断工作分成的现有方法可以等同于一个拥有更好的数字属性的路径问题。我们还应用了拟议的框架来获取算法,以尽量减少终端对终端的误差。我们通过数字评估发现,我们的新公式可以为DNNNE找到一种解决方案,无法将工作分配的频率降低到最终的路径上。 我们表明,在目前的计算中,我们的新公式可以将DNNE值选择的配置方式降低最终的频率,而不能将数据转换为最终的路径,从而将数据转换为升级的路径和算。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员