Deep neural networks (DNNs) and natural language processing (NLP) systems have developed rapidly and have been widely used in various real-world fields. However, they have been shown to be vulnerable to backdoor attacks. Specifically, the adversary injects a backdoor into the model during the training phase, so that input samples with backdoor triggers are classified as the target class. Some attacks have achieved high attack success rates on the pre-trained language models (LMs), but there have yet to be effective defense methods. In this work, we propose a defense method based on deep model mutation testing. Our main justification is that backdoor samples are much more robust than clean samples if we impose random mutations on the LMs and that backdoors are generalizable. We first confirm the effectiveness of model mutation testing in detecting backdoor samples and select the most appropriate mutation operators. We then systematically defend against three extensively studied backdoor attack levels (i.e., char-level, word-level, and sentence-level) by detecting backdoor samples. We also make the first attempt to defend against the latest style-level backdoor attacks. We evaluate our approach on three benchmark datasets (i.e., IMDB, Yelp, and AG news) and three style transfer datasets (i.e., SST-2, Hate-speech, and AG news). The extensive experimental results demonstrate that our approach can detect backdoor samples more efficiently and accurately than the three state-of-the-art defense approaches.


翻译:深神经网络(DNN)和自然语言处理(NLP)系统发展迅速,在现实世界的各个领域广泛使用。然而,事实证明它们很容易受到幕后攻击。具体地说,对手在培训阶段将一个后门输入模型,因此,带后门触发器的输入样本被归类为目标类别。一些攻击在经过训练的语言模型(LMS)上达到了高攻击成功率,但还没有有效的防御方法。在这项工作中,我们建议了一种基于深层模型突变测试的防御方法。我们的主要理由是,如果我们对LMS进行随机突变,而后门则可以普遍推广,后门样本比清洁样品强得多。我们首先确认模型突变测试在检测后门样品和选择最合适的变异操作器方面的有效性。然后,我们通过探测广泛的后门攻击等级(即,级别、字级、字级和句级)来系统防御三种深层次的后门攻击率。我们还第一次试图保护后门样品比干净的样品要强得多。我们还第一次试图防御最新的后门样品,如果我们在LMM(S)和后级上进行随机级的样品。我们的三个数据、SST和AG(我们用来衡量三个数据,我们的数据基准。我们用三个数据。我们用来衡量。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月16日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员