Recent advancements in generative machine learning have enabled rapid progress in biological design tools (BDTs) such as protein structure and sequence prediction models. The unprecedented predictive accuracy and novel design capabilities of BDTs present new and significant dual-use risks. For example, their predictive accuracy allows biological agents, whether vaccines or pathogens, to be developed more quickly, while the design capabilities could be used to discover drugs or evade DNA screening techniques. Similar to other dual-use AI systems, BDTs present a wicked problem: how can regulators uphold public safety without stifling innovation? We highlight how current regulatory proposals that are primarily tailored toward large language models may be less effective for BDTs, which require fewer computational resources to train and are often developed in an open-source manner. We propose a range of measures to mitigate the risk that BDTs are misused, across the areas of responsible development, risk assessment, transparency, access management, cybersecurity, and investing in resilience. Implementing such measures will require close coordination between developers and governments.
翻译:暂无翻译