Deep generative models aim to learn underlying distributions that generate the observed data. Given the fact that the generative distribution may be complex and intractable, deep latent variable models use probabilistic frameworks to learn more expressive joint probability distributions over the data and their low-dimensional hidden variables. Learning complex probability distributions over sequential data without any supervision is a difficult task for deep generative models. Ordinary Differential Equation Variational Auto-Encoder (ODE2VAE) is a deep latent variable model that aims to learn complex distributions over high-dimensional sequential data and their low-dimensional representations. ODE2VAE infers continuous latent dynamics of the high-dimensional input in a low-dimensional hierarchical latent space. The hierarchical organization of the continuous latent space embeds a physics-guided inductive bias in the model. In this paper, we analyze the latent representations inferred by the ODE2VAE model over three different physical motion datasets: bouncing balls, projectile motion, and simple pendulum. Through our experiments, we explore the effects of the physics-guided inductive bias of the ODE2VAE model over the learned dynamical latent representations. We show that the model is able to learn meaningful latent representations to an extent without any supervision.
翻译:深基因模型旨在学习产生观测到的数据的基本分布; 鉴于基因分布可能是复杂和棘手的,深潜可变模型使用概率框架来学习数据及其低维隐藏变量的更显性联合概率分布; 学习序列数据的复杂概率分布而没有任何监督,对于深基因模型来说是一项困难的任务。 普通差异分布式自动- Encolder(OD2VAE)是一个深潜变量模型,目的是学习高维相继数据及其低维表现的复杂分布。 ODE2VAE 推断出高维投入在低维级潜层潜层空间中的持续潜伏动态。 连续潜层空间的等级组织在模型中嵌入物理导导导的感性偏差。 在本文中,我们分析了由OD2VAE模型在三个不同的物理运动数据集中推导出的潜伏图象: 闪烁球、投射动作和简单的穿透式。 通过我们的实验,我们探索物理学导导导导导导导导导模型在低维级潜伏模型中的影响,我们能够了解潜伏的演示。