Our goal is to recover time-delayed latent causal variables and identify their relations from measured temporal data. Estimating causally-related latent variables from observations is particularly challenging as the latent variables are not uniquely recoverable in the most general case. In this work, we consider both a nonparametric, nonstationary setting and a parametric setting for the latent processes and propose two provable conditions under which temporally causal latent processes can be identified from their nonlinear mixtures. We propose LEAP, a theoretically-grounded framework that extends Variational AutoEncoders (VAEs) by enforcing our conditions through proper constraints in causal process prior. Experimental results on various datasets demonstrate that temporally causal latent processes are reliably identified from observed variables under different dependency structures and that our approach considerably outperforms baselines that do not properly leverage history or nonstationarity information. This demonstrates that using temporal information to learn latent processes from their invertible nonlinear mixtures in an unsupervised manner, for which we believe our work is one of the first, seems promising even without sparsity or minimality assumptions.


翻译:我们的目标是从测量的时间数据中恢复时间延迟的潜在因果变数,并从测量的时间数据中确定其关系。从观察中估计与因果相关的潜在变数特别具有挑战性,因为在最一般的情况下,潜在变数并非独特的可回收性。在这项工作中,我们既考虑非参数性、非静止的设置,也考虑潜在过程的参数设置,并提议两个可辨别的条件,据此可以从非线性混合物中查明时间因果潜在变数。我们提议LEAP,这是一个理论上基于基础的框架,通过在因果关系过程之前的适当限制来实施我们的条件,扩展变异性自动电算器(VAE),从而扩展变异性自动电算器(VAE)。各种数据集的实验结果表明,从不同依赖结构下观察到的变数中可以可靠地识别出时间因果潜在变数过程,而且我们的方法大大超出基线,不能适当地利用历史或非静性信息。这说明,利用时间信息从不可测的非线性混合物中学习潜在过程。我们用时间信息,我们认为我们的工作是第一种,即使没有空间或最小的假设,也似乎有希望。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员