The hyperbolicity of a graph, informally, measures how close a graph is (metrically) to a tree. Hence, it is intuitively similar to treewidth, but the measures are formally incomparable. Motivated by the broad study of algorithms and separators on planar graphs and their relation to treewidth, we initiate the study of planar graphs of bounded hyperbolicity. Our main technical contribution is a novel balanced separator theorem for planar $\delta$-hyperbolic graphs that is substantially stronger than the classic planar separator theorem. For any fixed $\delta \geq 0$, we can find balanced separator that induces either a single geodesic (shortest) path or a single geodesic cycle in the graph. An important advantage of our separator is that the union of our separator (vertex set $Z$) with any subset of the connected components of $G - Z$ induces again a planar $\delta$-hyperbolic graph, which would not be guaranteed with an arbitrary separator. Our construction runs in near-linear time and guarantees that size of separator is $\mathrm{poly}(\delta) \cdot \log n$. As an application of our separator theorem and its strong properties, we obtain two novel approximation schemes on planar $\delta$-hyperbolic graphs. We prove that Maximum Independent Set and the Traveling Salesperson problem have a near-linear time FPTAS for any constant $\delta$, running in $n\, \mathrm{polylog}(n) \cdot 2^{\mathcal{O}(\delta^2)} \cdot \varepsilon^{-\mathcal{O}(\delta)}$ time. We also show that our approximation scheme for Maximum Independent Set has essentially the best possible running time under the Exponential Time Hypothesis (ETH). This immediately follows from our third contribution: we prove that Maximum Independent Set has no $n^{o(\delta)}$-time algorithm on planar $\delta$-hyperbolic graphs, unless ETH fails.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月30日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员