Vaccination is widely acknowledged as one of the most effective tools for preventing disease. However, there has been a rise in parental refusal and delay of childhood vaccination in recent years in the United States. This trend undermines the maintenance of herd immunity and elevates the likelihood of outbreaks of vaccine-preventable diseases. Our aim is to identify demographic or socioeconomic characteristics associated with vaccine refusal, which could help public health professionals and medical providers develop interventions targeted to concerned parents. We examine US county-level vaccine refusal data for patients under five years of age collected on a monthly basis during the period 2012--2015. These data exhibit challenging features: zero inflation, spatial dependence, seasonal variation, and spatially-varying dispersion, for data observed on approximately 3,000 counties per month. We propose a flexible zero-inflated Conway--Maxwell--Poisson (ZICOMP) regression model that addresses these challenges. Because the ZICOMP model has an intractable normalizing function, Bayesian inference can be difficult. We propose a new hybrid Monte Carlo algorithm that permits efficient sampling, automatically selects a basis representation for the spatial process via reversible jump MCMC, and provides asymptotically exact approximations of the posterior distribution of the model parameters. We use our approach to learn about characteristics impacting vaccine refusal in the US.


翻译:疫苗接种被广泛认为是预防疾病最有效的手段之一。然而,近年来美国父母拒绝或延迟儿童接种疫苗的趋势上升。这一趋势削弱了维护群体免疫力的能力,提高了疫苗可预防疾病爆发的可能性。我们的目标是确定与疫苗拒绝相关的人口或社会经济特征,这可能有助于公共卫生专业人员和医疗提供者制定针对相关父母的干预措施。我们考察了2012-2015年间收集的美国五岁以下患者的县级疫苗拒绝数据,这些数据显示了以下令人困惑的特征:零膨胀、空间依赖、季节性变化以及空间分散性改变,每月约观察3,000个县。我们提出了一种灵活的零膨胀Conway-Maxwell-Poisson(ZICOMP)回归模型来解决这些挑战。由于ZICOMP模型有一个棘手的规范化函数,贝叶斯推断可能比较困难。我们提出了一种新的混合蒙特卡罗算法,它允许高效采样,通过可逆跳跃MCMC自动选择空间过程的基础表示,并提供模型参数后验分布的渐近精确逼近。我们使用我们的方法了解了影响美国疫苗拒绝的特征。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
WWW 2019会议接收文章列表放出,恭喜各位!
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关VIP内容
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
WWW 2019会议接收文章列表放出,恭喜各位!
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员