The lack of large-scale real datasets with annotations makes transfer learning a necessity for video activity understanding. We aim to develop an effective method for few-shot transfer learning for first-person action classification. We leverage independently trained local visual cues to learn representations that can be transferred from a source domain, which provides primitive action labels, to a different target domain using only a handful of examples. Visual cues we employ include object-object interactions, hand grasps and motion within regions that are a function of hand locations. We employ a framework based on meta-learning to extract the distinctive and domain invariant components of the deployed visual cues. This enables transfer of action classification models across public datasets captured with diverse scene and action configurations. We present comparative results of our transfer learning methodology and report superior results over state-of-the-art action classification approaches for both inter-class and inter-dataset transfer.


翻译:缺乏带有说明的大规模真实数据集,使得转移学习成为了解视频活动的必要条件。我们的目标是开发一种有效的方法,用于为第一人行动分类而进行微小的转移学习。我们利用独立培训的当地视觉提示来学习可从源域(提供原始动作标签)转移到不同目标域(仅使用少数例子)的演示。我们使用的视觉提示包括作为人工地点功能的区域内的物体-物体相互作用、手握和运动。我们使用基于元学习的框架来提取部署的视觉提示的独特和域内变量组成部分。这样就可以将行动分类模型转移到以不同场景和动作配置采集的公开数据集之间。我们介绍了我们转移学习方法的比较结果,并报告了不同类别间和数据间传输的最新行动分类方法的优异结果。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员