Space-bounded computation has been a central topic in classical and quantum complexity theory. In the quantum case, every elementary gate must be unitary. This restriction makes it unclear whether the power of space-bounded computation changes by allowing intermediate measurement. In the bounded error case, Fefferman and Remscrim [STOC 2021, pp.1343--1356] and Girish, Raz and Zhan~[ICALP 2021, pp.73:1--73:20] recently provided the break-through results that the power does not change. This paper shows that a similar result holds for space-bounded quantum computation with postselection. Namely, it is proved possible to eliminate intermediate postselections and measurements in the space-bounded quantum computation in the bounded-error setting. Our result strengthens the recent result by Le Gall, Nishimura and Yakaryilmaz~[TQC 2021, pp.10:1--10:17] that logarithmic-space bounded-error quantum computation with intermediate postselections and measurements is equivalent in computational power to logarithmic-space unbounded-error probabilistic computation. As an application, it is shown that bounded-error space-bounded one-clean qubit computation (DQC1) with postselection is equivalent in computational power to unbounded-error space-bounded probabilistic computation, and the computational supremacy of the bounded-error space-bounded DQC1 is interpreted in complexity-theoretic terms.
翻译:空间约束计算是经典和量子复杂度理论中的一个核心主题。 在量子学中, 每一个基本门都必须是单一的。 这一限制使得它不清楚允许中间测量, 空间约束计算的变化是否具有类似的结果。 在受约束的错误案例中, Fefferman 和 Remscrim [STOC 2021, pp.1343- 1356] 和 Girish、 Raz 和 Zhan~ [CricalP 2021, pp. 73:1- 73: 73: 20] 最近提供了该权力不会改变的突破结果。 本文显示, 空间限制的量计算与后选的空间限制量计算具有类似的结果。 也就是说, 事实证明, 在受空间约束的量计算计算计算中, Q- 规则的计算中, Q- 的对空间稳定度值的计算中, 显示空间稳定度- 的计算中, 将空间稳定度- 与对等值的计算中 。