Metaheuristics are gradient-free and problem-independent search methods. They have gained huge success in solving various optimization problems in academia and industry. Automated metaheuristic algorithm design is a promising alternative to human-made design. This paper proposes a methodological framework, AutoOpt, for automatically designing metaheuristic algorithms for optimization problems. AutoOpt consists of: (1) a bi-level criterion to evaluate the designed algorithms' performance; (2) a general schema of the decision space from where the algorithms will be designed; (3) a mixed graph- and real number-based representation to represent the designed algorithms; and (4) a model-free method to conduct the design process. AutoOpt benefits academic researchers and practical users struggling to design metaheuristic algorithms for optimization problems. A real-world case study demonstrates AutoOpt's effectiveness and efficiency.
翻译:元体学是无梯度的、问题独立的搜索方法,在解决学术界和工业界的各种优化问题方面取得了巨大成功。自动计量算法设计是人造设计的一种很有希望的替代方法。本文提出了一个方法框架AutoOpt,用于为优化问题自动设计计量算法。自动操作包括:(1) 评估设计算法绩效的双级标准;(2) 设计算法的决策空间的一般模式;(3) 代表设计算法的图表和实际数字代表;(4) 设计过程的模型不使用方法。自动操作有利于学术研究人员和实际用户为优化问题设计计量算法。一个真实世界案例研究展示了AutoOpt的效能和效率。