This paper is concerned with an inverse source problem for the stochastic wave equation driven by a fractional Brownian motion. Given the random source, the direct problem is to study the solution of the stochastic wave equation. The inverse problem is to determine the statistical properties of the source from the expectation and covariance of the final-time data. For the direct problem, it is shown to be well-posed with a unique mild solution. For the inverse problem, the uniqueness is proved for a certain class of functions and the instability is characterized. Numerical experiments are presented to illustrate the reconstructions by using a truncation-based regularization method.


翻译:本文关注的是由分数布朗运动驱动的随机源码波方程式的反源法问题。 根据随机源码,直接问题在于研究随机波方程式的解决方案。 反源码问题在于根据最终时间数据的预期和变量确定源码的统计属性。 对于直接问题,则表明它具有独特的温和解决办法。 对于反源码问题,则证明某类功能的独特性和不稳定性。 数字实验用以脱轨法说明重建情况。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员