We investigate some aspects of the problem of the estimation of birth distributions (BD) in multi-type Galton-Watson (MGW) trees with unobserved types. More precisely, we consider a two-type MGW called spinal-structured trees. This kind of tree is characterized by a spine of special individuals whose BD $\nu$ is different from the other individuals in the tree (called normal whose BD is denoted $\mu$). In this work, we show that even in such a very structured two-types population, our ability to distinguish the two types and estimate $\mu$ and $\nu$ is constrained by a trade off between the growth-rate of the population and the similarity of $\mu$ and $\nu$. Indeed, if the growth-rate is too large, large deviations events are likely to be observed in the sampling of the normal individuals preventing us to distinguish them from special ones. Roughly speaking, our approach succeed if $r<\mathfrak{D}(\mu,\nu)$ where $r$ is the exponential growth-rate of the population and $\mathfrak{D}$ is a divergence measuring the dissimilarity between $\mu$ and $\nu$.
翻译:我们调查了多型Galton-Watson(MGW)树中未观测到的种类的多型Galton-Watson(MGW)树(BD)的出生分布估计问题的某些方面。更准确地说,我们考虑的是两种类型的MGW(MGW)树,这种树的特征是脊椎型树。这种树的特征是,一些特殊个人的脊椎,其BD$=nu$不同于树上的其他个人(所谓的正常人,其BD表示的为$=mu$)。在这项工作中,我们发现,即使在结构非常结构化的两种类型人口中,我们区分两种类型和估计$\mu$和$\nu$($)的能力都受到人口增长率与美元相似性($)之间的交易限制。事实上,如果增长率太高,在普通人抽样中就有可能观察到大的偏差事件,使我们无法区分他们与特殊群体。粗略地说,如果我们的方法成功,如果美元是美元(mu,\\\\nu)美元是衡量人口和美元之间的指数差异之间的美元差异,那么我们的方法是成功的。