This work presents two significant contributions from the perspectives of QRNG manufacturers and users. For manufacturers, the conventional method of assessing the quantumness of single-photon-based QRNGs through mean and variance comparisons of photon counts is statistically unreliable due to finite sample sizes. Given the sub-Poissonian statistics of single photons, confirming the underlying distribution is crucial for validating a QRNG's quantumness. We propose a more efficient two-fold statistical approach to ensure the quantumness of optical sources with the desired confidence level. Additionally, we demonstrate that the output of QRNGs from exponential and uniform distributions exhibit similarity under device noise, deriving corresponding photon statistics and conditions for $\epsilon$-randomness. From the user's perspective, the fundamental parameters of a QRNG are quantumness, efficiency (random entropy and random number generation rate), and cost. Our analysis reveals that these parameters depend on three factors, namely, expected photon count per unit time, external reference cycle duration, and detection efficiency. A lower expected photon count enhances entropy but increases cost and decreases the generation rate. A shorter external reference cycle boosts entropy but must exceed a minimum threshold to minimize timing errors, with minor impacts on cost and rate. Lower detection efficiency enhances entropy and lowers cost but reduces the generation rate. Finally, to validate our results, we perform statistical tests like NIST, Dieharder, AIS-31, ENT etc. over the data simulated with different values of the above parameters. Our findings can empower manufacturers to customize QRNGs to meet user needs effectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员