We consider non-conforming discretizations of the stationary Stokes equation in three spatial dimensions by Crouzeix-Raviart type elements. The original definition in the seminal paper by M. Crouzeix and P.-A. Raviart in 1973 is implicit and also contains substantial freedom for a concrete choice. In this paper, we introduce canonical Crouzeix-Raviart basis functions in 3D in analogy to the 2D case in a fully explicit way. We prove that this canonical CrouzeixRaviart element for the Stokes equation is inf-sup stable for polynomial degree $k =2$ (quadratic velocity approximation). We identify spurious pressure modes for the conforming $(k; k - 1)$ 3D Stokes element and show that these are eliminated by using the canonical Crouzeix-Raviart space.
翻译:我们认为,Crouzix-Raviart类型元素在三个空间层面的固定式Stokes方程式不相容分解,1973年由M.Crouzix和P.-A.Raviart撰写的原始基本文件定义是隐含的,并含有对具体选择的实质性自由。在本文中,我们以完全明确的方式将3D类比为3D,引入Crouzeix-Raviart的立体立体基函数。我们证明,Stoks方程式的这种直流式Crouzix-Raviart元素在多核度为$k=2$(赤道速度近似)的情况下是无法稳定起来的。我们确定了符合$(k;k)-1美元3Dokes元素的虚假压力模式,并表明使用Crouzix-Raviart空间消除了这些模式。