In recent years, we have witnessed myriad flavours of Mobile Network Aggregators (MNAs) which exploit the coverage footprint of a handful of base operators to provide global mobile connectivity. Under the MNA model, emerging operators reap the benefits of network softwarization and virtualization, including eSIM technology or control/data-plane separation. This paper investigates an emergent MNA type - a thick MNA - that relies on multiple (core) base operators from different economies to provision eSIM profiles, while employing gateway functions to the public internet located outside the respective base operators' home country. Specifically, our work is the first to capture the intricacies of Airalo - a thick MNA that operates in 219 countries. Unlike other MNAs that our community scrutinized, we show that Airalo often decouples the geographical location of the public internet gateway from the native country of the base operator via IPX Hub Breakout (IHBO). To map Airalo's underlying infrastructure, we ran web-based measurements that 14 volunteers performed while traveling and using an Airalo eSIM on their personal devices. We further dive into Airalo's performance by running device-based measurements (speedtest, traceroute, video streaming, etc.) in 10 countries with rooted Android devices. Finally, we examine Airalo's pricing by monitoring its marketplace.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
10+阅读 · 2022年6月15日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
27+阅读 · 2023年2月10日
Arxiv
10+阅读 · 2022年6月15日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年1月12日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员