We introduce a Markov Chain Monte Carlo (MCMC) method that is designed to sample from target distributions with irregular geometry using an adaptive scheme. In cases where targets exhibit non-Gaussian behaviour, we propose that adaption should be regional rather than global. Our algorithm minimizes the information projection component of the Kullback-Leibler (KL) divergence between the proposal and target distributions to encourage proposals that are distributed similarly to the regional geometry of the target. Unlike traditional adaptive MCMC, this procedure rapidly adapts to the geometry of the target's current position as it explores the surrounding space without the need for many preexisting samples. The divergence minimization algorithms are tested on target distributions with irregularly shaped modes and we provide results demonstrating the effectiveness of our methods.
翻译:我们引入了Markov链条蒙特卡洛(MCMC)方法,该方法旨在利用适应性办法从不规则的几何分布目标中取样,如果目标显示非高加索行为,我们建议适应应该是区域性的,而不是全球性的。我们的算法最大限度地缩小了Kullback-Lebel(KL)提案与目标分布之间的信息投影部分,以鼓励与目标的区域几何分布相似的建议。与传统的适应性MC不同,这一程序迅速适应目标当前位置的几何分布,因为它在探索周围空间时不需要许多原有样本。差异最小化算法是用不规则模式对目标分布进行测试的,我们提供了显示我们方法有效性的结果。