Using gradient descent (GD) with fixed or decaying step-size is standard practice in unconstrained optimization problems. However, when the loss function is only locally convex, such a step-size schedule artificially slows GD down as it cannot explore the flat curvature of the loss function. To overcome that issue, we propose to exponentially increase the step-size of the GD algorithm. Under homogeneous assumptions on the loss function, we demonstrate that the iterates of the proposed \emph{exponential step size gradient descent} (EGD) algorithm converge linearly to the optimal solution. Leveraging that optimization insight, we then consider using the EGD algorithm for solving parameter estimation under non-regular statistical models whose the loss function becomes locally convex when the sample size goes to infinity. We demonstrate that the EGD iterates reach the final statistical radius within the true parameter after a logarithmic number of iterations, which is in stark contrast to a \emph{polynomial} number of iterations of the GD algorithm. Therefore, the total computational complexity of the EGD algorithm is \emph{optimal} and exponentially cheaper than that of the GD for solving parameter estimation in non-regular statistical models. To the best of our knowledge, it resolves a long-standing gap between statistical and algorithmic computational complexities of parameter estimation in non-regular statistical models. Finally, we provide targeted applications of the general theory to several classes of statistical models, including generalized linear models with polynomial link functions and location Gaussian mixture models.
翻译:使用固定或衰变的梯度下降( GD) 是不受限制的优化问题的标准做法 。 但是, 当损失函数只是本地端点时, 这样的梯度缩放计划会人为地减缓 GD, 因为它无法探索损失函数的平坦曲线 。 为了克服这一问题, 我们提议指数增加 GD 算法的梯度大小。 在对损失函数的一致假设下, 我们表明, 提议的 \ emph{ 超度梯度梯度下降} (EGD) 算法的循环会线性地集中到最佳的解决方案中。 利用这种优化的洞察觉, 我们然后考虑使用 EGD 缩略缩略缩缩缩缩缩缩缩缩缩略图, 在样本大小变得无限的时候, 以本地缩略微缩略图缩略图为缩略微的参数估算值。 与 GD算法的正正比模型的直线值值值值相比, GGGLD 的统计模型的计算模型和直径值模型中, 最精确的统计模型的计算复杂度, 也提供了我们统计模型中最精确的统计模型, 和最精确的精确的计算模型, 。