This paper presents a novel method for clustering surfaces. The proposal involves first using basis functions in a tensor product to smooth the data and thus reduce the dimension to a finite number of coefficients, and then using these estimated coefficients to cluster the surfaces via the k-means algorithm. An extension of the algorithm to clustering tensors is also discussed. We show that the proposed algorithm exhibits the property of strong consistency, with or without measurement errors, in correctly clustering the data as the sample size increases. Simulation studies suggest that the proposed method outperforms the benchmark k-means algorithm which uses the original vectorized data. In addition, an EGG real data example is considered to illustrate the practical application of the proposal.
翻译:本文介绍了一种新颖的集群表面方法。 该提案首先涉及在高压产品中使用基础功能来平滑数据,从而将维度降低到一定的系数数量,然后使用这些估计系数来通过 k- means 算法对表面进行分组。 也讨论了将算法扩大到 rowors 的问题。 我们表明,拟议的算法显示出随着抽样规模的增加,在将数据正确分组时,无论是否有测量误差,其特性都是非常一致的。 模拟研究表明,拟议的方法比使用原始矢量数据的基准 k- means 算法要好。 此外,还考虑了EGG的真实数据实例,以说明该提案的实际应用情况。