Enabling robots to work in close proximity to humans necessitates a control framework that does not only incorporate multi-sensory information for autonomous and coordinated interactions but also has perceptive task planning to ensure an adaptable and flexible collaborative behaviour. In this research, an intuitive stack-of-tasks (iSoT) formulation is proposed, that defines the robot's actions by considering the human-arm postures and the task progression. The framework is augmented with visuo-tactile information to effectively perceive the collaborative environment and intuitively switch between the planned sub-tasks. The visual feedback from depth cameras monitors and estimates the objects' poses and human-arm postures, while the tactile data provides the exploration skills to detect and maintain the desired contacts to avoid object slippage. To evaluate the performance, effectiveness and usability of the proposed framework, assembly and disassembly tasks, performed by the human-human and human-robot partners, are considered and analyzed using distinct evaluation metrics i.e, approach adaptation, grasp correction, task coordination latency, cumulative posture deviation, and task repeatability.
翻译:使机器人能够在接近人类的地方工作,这就需要有一个控制框架,这一框架不仅包含自主和协调互动的多感知信息,而且具有确保灵活适应性协作行为的感知性任务规划。在这一研究中,提出了直观的一叠任务(iSoT)配方,通过考虑人类武器态势和任务进展来界定机器人的行动。这个框架以相对触动信息加以扩展,以有效认识协作环境,并在计划中的子任务之间直觉转换。深度摄像机的视觉反馈显示和估计物体的容积和人类武器态势,而触动数据提供探测和保持所需接触以避免天体滑动的探索技能。为了评估由人类和人类机器人伙伴执行的拟议框架、组装和拆卸任务的业绩、有效性和可用性,将使用不同的评价指标(e)来考虑和分析,例如,如何适应,如何掌握任务协调的拉长、累积姿势偏离和任务重复性。