Modern processors have suffered a deluge of danger- ous side channel and speculative execution attacks that exploit vulnerabilities rooted in branch predictor units (BPU). Many such attacks exploit the shared use of the BPU between un- related processes, which allows malicious processes to retrieve sensitive data or enable speculative execution attacks. Attacks that exploit collisions between different branch instructions inside the BPU are among the most dangerous. Various protections and mitigations are proposed such as CPU microcode updates, secured cache designs, fencing mechanisms, invisible speculations. While some effectively mitigate speculative execution attacks, they overlook BPU as an attack vector, leaving BPU prone to malicious collisions and resulting critical penalty such as advanced micro-op cache attacks. Furthermore, some mitigations severely hamper the accuracy of the BPU resulting in increased CPU performance overhead. To address these, we present the secret token branch predictor unit (STBPU), a branch predictor design that mitigates collision-based speculative execution attacks and BPU side channel whilst incurring little to no performance overhead. STBPU achieves this by customizing inside data representations for each software entity requiring isolation. To prevent more advanced attacks, STBPU monitors hardware events and preemptively changes how STBPU data is stored and interpreted.


翻译:现代处理器遭受了大量危险的侧面通道和投机性执行攻击,这些攻击利用了分支预测器(BPU)中根深蒂固的弱点,利用了大量危险的侧面通道和投机性执行攻击,许多这类攻击利用了非相关流程之间对BPU的共同使用,使恶意程序能够检索敏感数据或导致投机性执行攻击。利用BPU内部不同分支指令之间碰撞的攻击是最危险的攻击。提出了各种保护和缓解办法,如CPU微代码更新、安全缓冲设计、围栏机制、无形猜测等。虽然有些可以有效减轻投机性执行攻击,但它们忽视BPU作为攻击矢量,使BPU容易受到恶意碰撞,并导致诸如高级微操作缓冲攻击等关键惩罚。此外,有些减少措施严重妨碍了BPUPU的准确性,导致CPU绩效管理增加。为了解决这些问题,我们提出了秘密象征性分支预测器(STBPUPU),这是一种减少碰撞性投机性执行攻击和BPU侧通道,但几乎不产生性压顶点。STBPUPU通过对每个需要隔离的软件实体内部数据展示来实现这一目标。

0
下载
关闭预览

相关内容

百度首发《智慧城市白皮书(2021)》
专知会员服务
64+阅读 · 2021年8月13日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
163+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月4日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
百度首发《智慧城市白皮书(2021)》
专知会员服务
64+阅读 · 2021年8月13日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
163+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
相关论文
Top
微信扫码咨询专知VIP会员