While deep generative models have succeeded in image processing, natural language processing, and reinforcement learning, training that involves discrete random variables remains challenging due to the high variance of its gradient estimation process. Monte Carlo is a common solution used in most variance reduction approaches. However, this involves time-consuming resampling and multiple function evaluations. We propose a Gapped Straight-Through (GST) estimator to reduce the variance without incurring resampling overhead. This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax. We determine these properties and show via an ablation study that they are essential. Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks, MNIST-VAE and ListOps.
翻译:虽然深基因模型在图像处理、自然语言处理和强化学习方面取得了成功,但是,由于梯度估计过程差异很大,涉及离散随机变量的培训仍然具有挑战性。蒙特卡洛是大多数减少差异方法中常用的一种解决办法,但是,这涉及耗时的抽查和多重功能评估。我们提议一个加盖的Snight-Trough(GST)估算器,以减少差异,而不会引起重新抽样管理。这一估算器的灵感来自Sight-Trough Gumbel-Softmax的基本特性。我们确定这些属性,并通过一项通缩研究显示这些属性是必要的。实验表明,拟议的GST估计仪的性能优于两个离散的深基因模型任务(MNIST-VAE和ListOps)的强基线。