Over the past few decades, computational methods have been developed to estimate perceptual audio quality. These methods, also referred to as objective quality measures, are usually developed and intended for a specific application domain. Because of their convenience, they are often used outside their original intended domain, even if it is unclear whether they provide reliable quality estimates in this case. This work studies the correlation of well-known state-of-the-art objective measures with human perceptual scores in two different domains: audio coding and source separation. The following objective measures are considered: fwSNRseg, dLLR, PESQ, PEAQ, POLQA, PEMO-Q, ViSQOLAudio, (SI-)BSSEval, PEASS, LKR-PI, 2f-model, and HAAQI. Additionally, a novel measure (SI-SA2f) is presented, based on the 2f-model and a BSSEval-based signal decomposition. We use perceptual scores from 7 listening tests about audio coding and 7 listening tests about source separation as ground-truth data for the correlation analysis. The results show that one method (2f-model) performs significantly better than the others on both domains and indicate that the dataset for training the method and a robust underlying auditory model are crucial factors towards a universal, domain-independent objective measure.


翻译:在过去几十年里,已经开发了计算方法来估计感知音质,这些方法(也称为客观质量措施)通常是为特定应用领域开发的,并打算用于特定应用领域。由于方便性,这些方法往往在原定领域之外使用,即使尚不清楚它们是否为本案提供了可靠的质量估计。这项工作研究了众所周知的先进客观措施与人类感知分数在两个不同领域的相互关系:音频编码和来源分离。考虑下列客观措施:fSNRseg、dLLR、PESQ、PEAQ、POLQA、PEMOQ、VisQOLAudio、(SI)BSESEval、PEASS、LKR-PI、2f-模型和HAQI。此外,根据2f-SSA2f模型和基于BSSEval的信号分解定位,提出了一个新的衡量标准。我们使用7项听力测试和7项关于源数据分的感知分数,作为地面和7项对源分离的测试,(SI-roduisty rodual)的精确度数据分析方法显示一个更精确的精确的对比方法。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
14+阅读 · 2020年12月17日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2018年11月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员