In this paper, HeadPosr is proposed to predict the head poses using a single RGB image. \textit{HeadPosr} uses a novel architecture which includes a transformer encoder. In concrete, it consists of: (1) backbone; (2) connector; (3) transformer encoder; (4) prediction head. The significance of using a transformer encoder for HPE is studied. An extensive ablation study is performed on varying the (1) number of encoders; (2) number of heads; (3) different position embeddings; (4) different activations; (5) input channel size, in a transformer used in HeadPosr. Further studies on using: (1) different backbones, (2) using different learning rates are also shown. The elaborated experiments and ablations studies are conducted using three different open-source widely used datasets for HPE, i.e., 300W-LP, AFLW2000, and BIWI datasets. Experiments illustrate that \textit{HeadPosr} outperforms all the state-of-art methods including both the landmark-free and the others based on using landmark or depth estimation on the AFLW2000 dataset and BIWI datasets when trained with 300W-LP. It also outperforms when averaging the results from the compared datasets, hence setting a benchmark for the problem of HPE, also demonstrating the effectiveness of using transformers over the state-of-the-art.


翻译:本文中提议, 头 Posr 使用一个 RGB 图像来预测头部的配置 。\ textit{ HeadPosr} 使用一个包含变压器编码器的新结构。 在混凝土中, 它由以下三个部分组成:(1) 脊柱; (2) 连接器; (3) 变压器编码器; (4) 预测头部。 正在研究使用变压器编码器对 HPE 使用变压器编码器的重要性。 对(1) 编码器数量; (2) 头数; (3) 不同位置嵌入; (4) 不同激活; (5) 输入通道大小, 在 HeadPosr 中使用的变压器。 关于使用:(1) 不同的骨架, (2) 使用不同的学习率。 详细实验和校正研究正在使用三种不同的开源进行, 广泛用于 HPEPE, 即 300W- LP, AFLW 2000 和 BIW 数据集 的变压式。 实验表明, 所有的状态方法都不符合, 包括无里程碑的变压式的变压器, 2000 和其他方法, 也使用经过测试的AFLS- RB-W 数据, 的比的平- RB- RB- RB-S 的 的 的平压压压压压压数据。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员