Model Predictive Path Integral (MPPI) control is a type of sampling-based model predictive control that simulates thousands of trajectories and uses these trajectories to synthesize optimal controls on-the-fly. In practice, however, MPPI encounters problems limiting its application. For instance, it has been observed that MPPI tends to make poor decisions if unmodeled dynamics or environmental disturbances exist, preventing its use in safety-critical applications. Moreover, the multi-threaded simulations used by MPPI require significant onboard computational resources, making the algorithm inaccessible to robots without modern GPUs. To alleviate these issues, we propose a novel (Shield-MPPI) algorithm that provides robustness against unpredicted disturbances and achieves real-time planning using a much smaller number of parallel simulations on regular CPUs. The novel Shield-MPPI algorithm is tested on an aggressive autonomous racing platform both in simulation and using experiments. The results show that the proposed controller greatly reduces the number of constraint violations compared to state-of-the-art robust MPPI variants and stochastic MPC methods.
翻译:模型预测路径综合控制(MPPI)是一种基于抽样的模型预测控制,它模拟了数千条轨迹,并利用这些轨迹合成最佳的飞行控制。但实际上,移动电话综合控制遇到限制其应用的问题。例如,据观察,如果存在未经改造的动态或环境扰动,移动电话综合控制往往会做出糟糕的决定,从而防止其在安全关键应用中的使用。此外,移动电话综合控制(MPPI)使用的多轨迹模拟需要大量机载计算资源,使没有现代GPU的机器人无法使用算法。为了缓解这些问题,我们提议了一个新颖的算法(Shield-MPPI),该算法提供抵御未预见的扰动的稳健性,并利用常规CPU上较少数量的平行模拟实现实时规划。新的Held-MPPI算法在模拟和使用实验时都在一个积极的自主赛道平台上测试。结果显示,拟议的控制器大大降低了与最先进的MPPI变异体和Stochic MPC方法相比,限制违规的次数。