We present methods for constructing any target coupling graph using limited global controls in an Ising-like quantum spin system. Our approach is motivated by implementing the quantum approximate optimization algorithm (QAOA) on trapped ion quantum hardware to find approximate solutions to Max-Cut. We present a mathematical description of the problem and provide approximately optimal algorithmic constructions that generate arbitrary unweighted coupling graphs with $n$ nodes in $O(n)$ global entangling operations and weighted graphs with $m$ edges in $O(m)$ operations. These upper bounds are not tight in general, and we formulate a mixed-integer program to solve the graph coupling problem to optimality. We perform numeric experiments on small graphs with $n\le8$ and show that optimal sequences, which use fewer operations, can be found using mixed-integer programs. Noisy simulations of Max-Cut QAOA show that our implementation is less susceptible to noise than the standard gate-based compilation.
翻译:我们提出了在类似Ising的量子旋系统中使用有限的全球控制构建任何目标组合图的方法。我们的方法是,对被困离子量子硬件实施量子近似优化算法(QAOA),以找到对Max-Cut的近似解决方案。我们用数学来描述问题,并提供大约最佳的算法构造,以美元(n)中以美元节点生成任意的未加权组合图,用美元(n)全球调料操作和以美元(m)中以美元(m)为边端的加权图。这些上边框一般不紧凑,我们设计了一个混合整齐程序,用美元(QAOA)解决图形组合问题,以至于最佳性。我们在小图上进行数字实验,用美元(n)8美元(le8),并表明使用较少的混合调试程序可以找到最佳的序列。Max-Cut QOA的 noisy 模拟显示,我们的实施比标准的门基汇编更不易受到噪音的影响。