In satellite layout design, heat source layout optimization (HSLO) is an effective technique to decrease the maximum temperature and improve the heat management of the whole system. Recently, deep learning surrogate assisted HSLO has been proposed, which learns the mapping from layout to its corresponding temperature field, so as to substitute the simulation during optimization to decrease the computational cost largely. However, it faces two main challenges: 1) the neural network surrogate for the certain task is often manually designed to be complex and requires rich debugging experience, which is challenging for the designers in the engineering field; 2) existing algorithms for HSLO could only obtain a near optimal solution in single optimization and are easily trapped in local optimum. To address the first challenge, considering reducing the total parameter numbers and ensuring the similar accuracy as well as, a neural architecture search (NAS) method combined with Feature Pyramid Network (FPN) framework is developed to realize the purpose of automatically searching for a small deep learning surrogate model for HSLO. To address the second challenge, a multimodal neighborhood search based layout optimization algorithm (MNSLO) is proposed, which could obtain more and better approximate optimal design schemes simultaneously in single optimization. Finally, two typical two-dimensional heat conduction optimization problems are utilized to demonstrate the effectiveness of the proposed method. With the similar accuracy, NAS finds models with 80% fewer parameters, 64% fewer FLOPs and 36% faster inference time than the original FPN. Besides, with the assistance of deep learning surrogate by automatic search, MNSLO could achieve multiple near optimal design schemes simultaneously to provide more design diversities for designers.
翻译:在卫星布局设计中,热源布局优化(HSLO)是降低最高温度和改善整个系统热管理的有效技术。最近,提出了深度学习代算法,从布局到相应的温度场学习模拟,以取代优化过程中的模拟,以降低计算成本。然而,它面临两大挑战:(1) 神经网络中某些任务的替代系统往往是手工设计的,需要丰富的调试经验,这对工程领域的设计者来说具有挑战性;(2) 现有HSLO的算法只能以单一优化方式获得接近最佳的解决方案,很容易被当地最佳地困住。 为了应对第一个挑战,考虑减少总参数数量,确保相似的温度场面,从而在优化时化时化时化时化时化,可以实现自动搜索一个比HSLO更小的原始代代谢模型的目的。 为了应对第二个挑战,基于多式社区搜索的布局优化算法(MNSOLO)只能以近乎最佳的方式进行当地最佳的解决方案。 最优化后期性设计方法可以同时使用80个最佳方法, 最优化后再使用最优性设计方法, 最优性设计方法可以找到最优性设计方法,最优性方法,最优化方法可以使用最优性地方法,最优性地精化的方法可以使用最优化方法,最优性地精化的为最优化方法,最优化方法为最优化方法,最优化方法为最优化方法为80次方法,最优化方法为最优化方法,最优化方法,最优化方法为最优化方法为最优化方法,最优化方法为最优化方法,最短的模型可达性地化方法为最精确地化方法,最短性地化方法,最短性方法,最短性方法为最短性地制方法可达性地制方法,最短性地方法,最短性地方法,最短性地制方法,最短性地制方法为最精确方法为最精确性地制方法,最精确性能方法,最精确性地制方法为最精确方法为最精确方法为最精确性地制方法为最精确性地制方法,最性地制方法为最性地制方法,最性地制方法,最性地制方法,最性能方法可达性地制方法可达性能方法,最性地制