Models that can handle a wide range of speakers and acoustic conditions are essential in speech emotion recognition (SER). Often, these models tend to show mixed results when presented with speakers or acoustic conditions that were not visible during training. This paper investigates the impact of cross-corpus data complementation and data augmentation on the performance of SER models in matched (test-set from same corpus) and mismatched (test-set from different corpus) conditions. Investigations using six emotional speech corpora that include single and multiple speakers as well as variations in emotion style (acted, elicited, natural) and recording conditions are presented. Observations show that, as expected, models trained on single corpora perform best in matched conditions while performance decreases between 10-40% in mismatched conditions, depending on corpus specific features. Models trained on mixed corpora can be more stable in mismatched contexts, and the performance reductions range from 1 to 8% when compared with single corpus models in matched conditions. Data augmentation yields additional gains up to 4% and seem to benefit mismatched conditions more than matched ones.


翻译:能够处理多种语言和声学条件的模型在语音情感识别(SER)中至关重要。这些模型通常在与演讲者或培训期间无法见的声学条件一起展示时显示结果喜忧参半。本文调查跨体数据补充和数据增强对SER模型在匹配(来自同一体的测试设置)和不匹配(来自不同体的测试设置)条件下的性能的影响。使用包括单一和多个语言以及情感风格(活动、诱导、自然)和记录条件变化的6个情感语言体体(包括单一和多重语言)进行调查。观察显示,按照预期,在不匹配条件下,在不匹配条件下,对单一体进行训练的模型表现最佳,而性能下降在10-40%之间,视物理特征而定。在不匹配的情况下,对混合体的模型培训可以更加稳定,与符合条件的单一体型相比,性能下降幅度从1%到8%不等。数据增强能产生高达4%的额外收益,对不匹配条件的受益似乎多于匹配条件。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员