Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under kinodynamic constraints. Due to its complexity, existing algorithms either utilize simplifying assumptions or are incomplete. This work introduces kinodynamic conflict-based search (K-CBS), a decentralized (decoupled) MRMP algorithm that is general, scalable, and probabilistically complete. The algorithm takes inspiration from successful solutions to the discrete analogue of MRMP over finite graphs, known as multi-agent path finding (MAPF). Specifically, we adapt ideas from conflict-based search (CBS) - a popular decentralized MAPF algorithm - to the MRMP setting. The novelty in this adaptation is that we work directly in the continuous domain, without the need for discretization. In particular, the kinodynamic constraints are treated natively. K-CBS plans for each robot individually using a low-level planner and and grows a conflict tree to resolve collisions between robots by defining constraints for individual robots. The low-level planner can be any sampling-based, tree-search algorithm for kinodynamic robots, thus lifting existing planners for single robots to the multi-robot settings. We show that K-CBS inherits the (probabilistic) completeness of the low-level planner. We illustrate the generality and performance of K-CBS in several case studies and benchmarks.
翻译:多机器人运动规划(MRMP)是找到多种机器人在一种环境中、在运动力制约下活动的非对称轨迹的根本问题。由于它的复杂性,现有的算法要么使用简化的假设,要么是不完整的。这项工作引入了基于运动动力冲突(K-CBS)的搜索(K-CBS),这是一种分散的(分解的)MRMP算法,这种算法是一般性的、可缩放的和概率完整的。算法从MRMP的离散模拟图比定基数(称为多试样路径发现(MAPF)的成功解决方案中得到启发。具体地说,我们把基于冲突搜索(CBS)的想法(CBS)——一种流行的分散式MAPF算法(CS)改编为MRMRMP的设置。这种调整的新颖之处是:我们直接在连续的领域工作,而不需要离散。特别是,对运动力限制是本地的。K-CBS的每个机器人个人计划K-CBS计划,并发展一种冲突树型机器人之间的碰撞,通过确定对单个机器人的制约。 我们的低级计划,可以将一个基-CRB-C-C-C-C-CB-C-C-C-C-C-C-C-C-C-B-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S-S-C-C-C-C-C-C-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-C-S-S-C-C-C-C-C-C-