The association between a person's physical activity and various health outcomes is an area of active research. The National Health and Nutrition Examination Survey (NHANES) data provide a valuable resource for studying these associations. NHANES accelerometry data has been used by many to measure individuals' activity levels. A common approach for analyzing accelerometry data is functional principal component analysis (FPCA). The first part of the paper uses Poisson FPCA (PFPCA), Gaussian FPCA (GFPCA), and nonnegative and regularized function decomposition (NARFD) to extract features from the count-valued NHANES accelerometry data. The second part of the paper compares logistic regression, random forests, and AdaBoost models based on GFPCA, NARFD, or PFPCA scores in the context of mortality prediction. The results show that Poisson FPCA is the best FPCA model for the inference of accelerometry data, and the AdaBoost model based on Poisson FPCA scores gives the best mortality prediction results.
翻译:一个人的体育活动与各种健康结果之间的联系是一个积极研究的领域。国家健康和营养检查调查数据为研究这些协会提供了宝贵的资源。NHANES 环境测量数据已被许多人用来测量个人的活动水平。一种共同的方法分析进化测量数据是功能性主要组成部分分析(FCCA)。文件的第一部分使用了Poisson FPCA(PFPCA)、Gaussian FPCA(GFPCA)和无偏向和正常功能分解(NARFD),以从计算值的NHANAES亚化测量数据中提取特征。文件的第二部分比较了基于GFPCA、NARFD或PFCA分数的物流回归、随机森林和AdaBoost模型,结果显示Poisson FPCA是FPCA最佳推断进化数据模型,基于Poisson FPCA分数的AdaBoost模型提供了最佳死亡率预测结果。