The modeling of personal accident insurance data has been a topic of extreme relevance in the insurance literature. In general, the data often exhibit positive asymmetry and heavy tails and non-quantile Birnbaum-Saunders regression models have been used in the modeling strategy. In this work, we propose a new quantile regression model based on the scale-mixture Birnbaum-Saunders distribution, which is reparametrized by inserting a quantile parameter. The maximum likelihood estimates of the model parameters are obtained via the EM algorithm. Two Monte Carlo simulation studies were performed using the \texttt{R} software. The first study aims to analyze the performance of the maximum likelihood estimates, the information criteria AIC, AICc, BIC, HIC, the root of the mean square error, and the randomized quantile and generalized Cox-Snell residuals. In the second simulation study, the size and power of the the Wald, likelihood ratio, score and gradient tests are evaluated. The two simulation studies were conducted considering different quantiles of interest and sample sizes. Finally, a real insurance data set is analyzed to illustrate the proposed approach.
翻译:在保险文献中,个人事故保险数据模型是一个极为相关的专题,一般而言,数据往往显示出正不对称和重尾以及非量性Birnbaum-Saunders回归模型在模型战略中使用。在这项工作中,我们根据比例混合的Birnbaum-Saunders分布,提出了一个新的量化回归模型,通过插入一个分数参数来重新校正。模型参数的最大概率估计数是通过EM算法获得的。两次蒙特卡洛模拟研究是使用\textt{R}软件进行的。第一次研究的目的是分析最大概率估计的性能、信息标准AIC、AICc、BIC、HIC、平均方差的根以及随机化的夸大和通用的Cox-Snell残留。在第二次模拟研究中,对沃尔德、概率比率、分数和梯度测试的大小和功率进行了评估。两次模拟研究是利用不同利息和抽样大小的孔数进行。最后,一个真实的保险数据集是用来分析提议的。