The modeling of personal accident insurance data has been a topic of extreme relevance in the insurance literature. In general, the data often exhibit positive asymmetry and heavy tails and non-quantile Birnbaum-Saunders regression models have been used in the modeling strategy. In this work, we propose a new quantile regression model based on the scale-mixture Birnbaum-Saunders distribution, which is reparametrized by inserting a quantile parameter. The maximum likelihood estimates of the model parameters are obtained via the EM algorithm. Two Monte Carlo simulation studies were performed using the \texttt{R} software. The first study aims to analyze the performance of the maximum likelihood estimates, the information criteria AIC, AICc, BIC, HIC, the root of the mean square error, and the randomized quantile and generalized Cox-Snell residuals. In the second simulation study, the size and power of the the Wald, likelihood ratio, score and gradient tests are evaluated. The two simulation studies were conducted considering different quantiles of interest and sample sizes. Finally, a real insurance data set is analyzed to illustrate the proposed approach.


翻译:在保险文献中,个人事故保险数据模型是一个极为相关的专题,一般而言,数据往往显示出正不对称和重尾以及非量性Birnbaum-Saunders回归模型在模型战略中使用。在这项工作中,我们根据比例混合的Birnbaum-Saunders分布,提出了一个新的量化回归模型,通过插入一个分数参数来重新校正。模型参数的最大概率估计数是通过EM算法获得的。两次蒙特卡洛模拟研究是使用\textt{R}软件进行的。第一次研究的目的是分析最大概率估计的性能、信息标准AIC、AICc、BIC、HIC、平均方差的根以及随机化的夸大和通用的Cox-Snell残留。在第二次模拟研究中,对沃尔德、概率比率、分数和梯度测试的大小和功率进行了评估。两次模拟研究是利用不同利息和抽样大小的孔数进行。最后,一个真实的保险数据集是用来分析提议的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
52+阅读 · 2020年9月7日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员