Mathematical modelling of unemployment dynamics attempts to predict the probability of a job seeker finding a job as a function of time. This is typically achieved by using information in unemployment records. These records are right censored, making survival analysis a suitable approach for parameter estimation. The proposed model uses a deep artificial neural network (ANN) as a non-linear hazard function. Through embedding, high-cardinality categorical features are analysed efficiently. The posterior distribution of the ANN parameters are estimated using a variational Bayes method. The model is evaluated on a time-to-employment data set spanning from 2011 to 2020 provided by the Slovenian public employment service. It is used to determine the employment probability over time for each individual on the record. Similar models could be applied to other questions with multi-dimensional, high-cardinality categorical data including censored records. Such data is often encountered in personal records, for example in medical records.


翻译:失业动态的数学建模试图预测求职者找到工作的概率,这通常通过使用失业记录中的信息来实现。这些记录经过正确审查,使生存分析成为参数估计的合适方法。拟议模型使用深人工神经网络作为非线性危险功能。通过嵌入,对高心性绝对特征进行了高效分析。使用变式贝耶斯方法估算了ANN参数的后端分布。该模型在斯洛文尼亚公共就业服务机构提供的2011年至2020年的工时数据集中进行了评估。该模型用于确定每个记录上个人在时间上的就业概率。类似的模型可用于涉及多维、高心性绝对数据的其他问题,包括受审查的记录。这些数据经常出现在个人记录中,例如医疗记录中。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
1+阅读 · 2021年9月19日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员