This paper investigates the controller optimization for a helicopter system with three degrees of freedom (3-DOF). To control the system, we combined fuzzy logic with adaptive control theory. The system is extensively nonlinear and highly sensitive to the controller's parameters, making it a real challenge to study these parameters' effect on the controller's performance. Using metaheuristic algorithms for determining these parameters is a promising solution. This paper proposes using a modified particle swarm optimization (MPSO) algorithm to optimize the controller. The algorithm shows a high ability to perform the global search and find a reasonable search space. The algorithm modifies the search space of each particle based on its fitness function value and substitutes weak particles for new ones. These modifications have led to better accuracy and convergence rate. We prove the efficiency of the MPSO algorithm by comparing it with the standard PSO and six other well-known metaheuristic algorithms when optimizing the adaptive fuzzy logic controller of the 3-DOF helicopter. The proposed method's effectiveness is shown through computer simulations while the system is subject to uncertainties and disturbance. We demonstrate the method's superiority by comparing the results when the MPSO and the standard PSO optimize the controller.
翻译:本文对三度自由( 3- DOF) 的直升机系统控制器优化进行了调查。 为了控制系统, 我们将模糊逻辑与适应性控制理论相结合。 该系统广泛非线性, 对控制器的参数高度敏感, 使得研究这些参数对控制器性能的影响成为真正的挑战。 使用计量经济学算法确定这些参数是一个很有希望的解决办法。 本文建议使用修改后的粒子群温优化算法优化控制器。 算法显示执行全球搜索和找到合理搜索空间的高度能力。 算法根据每个粒子的健身功能值修改搜索空间, 并取代微小粒子替换新粒子。 这些修改提高了准确性和聚合率。 我们通过将MPSO算法与标准的 PSO 和其他六种众所周知的计量算法进行比较,从而证明MPSO算法的效率。 在优化3- DOF 直升机的适应性模糊逻辑控制器时, 提议的方法的有效性通过计算机模拟显示, 而系统则受到不确定性和干扰。 我们通过比较最佳控制器和标准 PSO的结果, 来证明方法的优越性。