Copulas are widely used in financial economics as well as in other areas of applied mathematics. Yet, there is much arbitrariness in their choice. The author proposes "a natural copula" concept, which minimizes Wasserstein distance between distributions in some space, in which both these distributions are embedded. Transport properties and hydrodynamic interpretation are discussed with two examples of distributions of financial significance. A natural copula can be parsimoniously estimated by the methods of linear programming.
翻译:累积分布函数在金融经济学以及其他应用数学领域广泛应用。 然而,它们的选择具有很大的任意性。 作者提出了“自然的累积分布函数”概念,该概念通过某些空间中的分布进行嵌入,最小化这些分布之间的Wasserstein距离,其中这两个分布都嵌入其中。 讨论了运输特性和流体力学解释,其中包括具有金融意义的两个分布的示例。 通过线性规划的方法可以简要地估算自然的累积分布函数。