In statistical network analysis, we often assume either the full network is available or multiple subgraphs can be sampled to estimate various global properties of the network. However, in a real social network, people frequently make decisions based on their local view of the network alone. Here, we consider a partial information framework that characterizes the local network centered at a given individual by path length $L$ and gives rise to a partial adjacency matrix. Under $L=2$, we focus on the problem of (global) community detection using the popular stochastic block model (SBM) and its degree-corrected variant (DCSBM). We derive general properties of the eigenvalues and eigenvectors from the signal term of the partial adjacency matrix and propose new spectral-based community detection algorithms that achieve consistency under appropriate conditions. Our analysis also allows us to propose a new centrality measure that assesses the importance of an individual's partial information in determining global community structure. Using simulated and real networks, we demonstrate the performance of our algorithms and compare our centrality measure with other popular alternatives to show it captures unique nodal information. Our results illustrate that the partial information framework enables us to compare the viewpoints of different individuals regarding the global structure.
翻译:在统计网络分析中,我们往往认为,要么完全网络是存在的,要么可以对多个子集进行抽样,以估计网络的各种全球特性;然而,在真正的社会网络中,人们经常仅仅根据对网络的当地观点作出决定。在这里,我们考虑一个局部信息框架,以路径长度为单位,以某个个人为主,以路径长度为立方美元,并产生部分对称矩阵。在美元=2美元项下,我们侧重于利用流行的随机区块模型(SBM)及其程度校正变异(DCSBM)进行(全球)社区探测的问题。我们从部分对称值和源值的信号术语中,从部分对网络进行一般的属性决定。我们从部分对称矩阵的信号中,我们从中得出一个基于光谱的社区检测的新的算法,在适当条件下实现一致性。我们的分析还使我们能够提出一个新的中心度测量标准,用以评估个人部分信息在确定全球社区结构中的重要性。我们利用模拟和实际的网络,展示我们的算法的性能,并比较我们的核心度计量与其他流行的替代方法,以显示其独特的部分信息结构。我们能够比较关于个人的独特性框架。我们的结果说明如何比较关于个人。