Bayesian inference quantifies uncertainty directly and formally using classical probability theory, while frequentist inference does so indirectly and informally through the use of procedures with error rate control. Both have merits in the appropriate context, but the context isn't binary. If no prior information is available, then no prior distribution can be ruled out, so this context is best characterized as every prior. This implies there's an entire spectrum of contexts depending on what, if any, partial prior information is available, with "Bayesian" (one prior) and "frequentist" (every prior) on opposite extremes. Common examples between the two extremes include those high-dimensional problems where, e.g., sparsity assumptions are relevant but fall short of determining a complete prior distribution. This paper ties the two frameworks together by treating those cases where only partial prior information is available using the theory of imprecise probability. The end result is a unified framework of (imprecise-probabilistic) statistical inference with a new validity condition that implies both frequentist-style error rate control for derived procedures and Bayesian-style no-sure-loss properties, relative to the given partial prior information. This theory contains both the classical "Bayesian" and "frequentist" frameworks as special cases, since they're both valid in this new sense relative to their respective partial priors. Different constructions of these valid inferential models are considered, and compared based on their efficiency.
翻译:Bayesian 的推论可以直接和正式地用古典概率理论来量化不确定性,而经常论推论则通过使用有误率控制的程序间接和非正式地使用偏差率控制程序进行间接和非正式的推论。 两种极端之间的常见例子包括一些高维问题, 例如, 宽度假设是相关的, 但不及于确定完整的先前分布。 如果没有先前的信息, 那么就不能排除先前的分布, 因此这种背景最好被描述为每个先行的。 这意味着根据任何先前信息, 取决于可获得的( 任何) 部分先前信息, 以及“ 巴耶西亚” ( 先前的) 和“ 异常” (以往的) 统计推论, 而新的推论则意味着对衍生程序及巴耶斯- 风格的相对偏差率控制。 本文将这两个框架联系起来, 利用不准确的概率理论处理那些只有部分先前信息的案件。 最终结果是, 一个统一的( 不确定- 概率) 统计推论框架, 以及一个新的有效性条件, 意味着对衍生程序以及巴耶斯- 格式的相对的对比模型的相对而言, “ ” 之前的模型中, 之前的这一结构中, 既包括了这些特定的、 之前的、 的、 之前的、 之前的、 之前的、 之前的、 之前的、 之前的、 以及后法的、 的、 以及后法系的、 之前的、 的、 的、后的、后的特定的、 的、后等的、后法的、后等的、后等的、后等的、后等的、 的、后法的、 的、 的、后等的、后等的、 的、后等的、 的、 的、后等的、后等的、 。