Bayesian inference quantifies uncertainty directly and formally using classical probability theory, while frequentist inference does so indirectly and informally through the use of procedures with error rate control. Both have merits in the appropriate context, but the context isn't binary. If no prior information is available, then no prior distribution can be ruled out, so this context is best characterized as every prior. This implies there's an entire spectrum of contexts depending on what, if any, partial prior information is available, with "Bayesian" (one prior) and "frequentist" (every prior) on opposite extremes. Common examples between the two extremes include those high-dimensional problems where, e.g., sparsity assumptions are relevant but fall short of determining a complete prior distribution. This paper ties the two frameworks together by treating those cases where only partial prior information is available using the theory of imprecise probability. The end result is a unified framework of (imprecise-probabilistic) statistical inference with a new validity condition that implies both frequentist-style error rate control for derived procedures and Bayesian-style no-sure-loss properties, relative to the given partial prior information. This theory contains both the classical "Bayesian" and "frequentist" frameworks as special cases, since they're both valid in this new sense relative to their respective partial priors. Different constructions of these valid inferential models are considered, and compared based on their efficiency.


翻译:Bayesian 的推论可以直接和正式地用古典概率理论来量化不确定性,而经常论推论则通过使用有误率控制的程序间接和非正式地使用偏差率控制程序进行间接和非正式的推论。 两种极端之间的常见例子包括一些高维问题, 例如, 宽度假设是相关的, 但不及于确定完整的先前分布。 如果没有先前的信息, 那么就不能排除先前的分布, 因此这种背景最好被描述为每个先行的。 这意味着根据任何先前信息, 取决于可获得的( 任何) 部分先前信息, 以及“ 巴耶西亚” ( 先前的) 和“ 异常” (以往的) 统计推论, 而新的推论则意味着对衍生程序及巴耶斯- 风格的相对偏差率控制。 本文将这两个框架联系起来, 利用不准确的概率理论处理那些只有部分先前信息的案件。 最终结果是, 一个统一的( 不确定- 概率) 统计推论框架, 以及一个新的有效性条件, 意味着对衍生程序以及巴耶斯- 格式的相对的对比模型的相对而言, “ ” 之前的模型中, 之前的这一结构中, 既包括了这些特定的、 之前的、 的、 之前的、 之前的、 之前的、 之前的、 之前的、 之前的、 以及后法的、 的、 以及后法系的、 之前的、 的、 的、后的、后的特定的、 的、后等的、后法的、后等的、后等的、后等的、后等的、 的、后法的、 的、 的、后等的、后等的、 的、后等的、 的、 的、后等的、后等的、 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月26日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员