Musical Instrument Identification has for long had a reputation of being one of the most ill-posed problems in the field of Musical Information Retrieval(MIR). Despite several robust attempts to solve the problem, a timeline spanning over the last five odd decades, the problem remains an open conundrum. In this work, the authors take on a further complex version of the traditional problem statement. They attempt to solve the problem with minimal data available - one audio excerpt per class. We propose to use a convolutional Siamese network and a residual variant of the same to identify musical instruments based on the corresponding scalograms of their audio excerpts. Our experiments and corresponding results obtained on two publicly available datasets validate the superiority of our algorithm by $\approx$ 3\% over the existing synonymous algorithms in present-day literature.
翻译:音乐乐器识别长期以来的名声一直是音乐信息检索(MIR)领域最坏的问题之一。 尽管曾几次大力尝试解决这个问题,但过去五十多年来,问题仍然是一个开放的难题。在这项工作中,作者对传统问题说明书进行了更复杂的版本。他们试图用最低限度的数据解决问题,每班一份音频摘录。我们提议使用一个共和型暹米西语网络和一个剩余变体,根据他们音频摘录的对应天平图来识别乐器。我们从两个公开的数据集获得的实验和相应结果证实了我们算法的优越性,即$\ aprox$ 3 ⁇ 高于当今文献中现有的同义算法。