The use of mobiles phones when driving have been a major factor when it comes to road traffic incidents and the process of capturing such violations can be a laborious task. Advancements in both modern object detection frameworks and high-performance hardware has paved the way for a more automated approach when it comes to video surveillance. In this work, we propose a custom-trained state-of-the-art object detector to work with roadside cameras to capture driver phone usage without the need for human intervention. The proposed approach also addresses the issues caused by windscreen glare and introduces the steps required to remedy this. Twelve pre-trained models are fine-tuned with our custom dataset using four popular object detection methods: YOLO, SSD, Faster R-CNN, and CenterNet. Out of all the object detectors tested, the YOLO yields the highest accuracy levels of up to 96% (AP10) and frame rates of up to ~30 FPS. DeepSort object tracking algorithm is also integrated into the best-performing model to collect records of only the unique violations, and enable the proposed approach to count the number of vehicles. The proposed automated system will collect the output images of the identified violations, timestamps of each violation, and total vehicle count. Data can be accessed via a purpose-built user interface.
翻译:在道路交通事故和捕捉此类违规事件过程中,驾驶时使用移动电话是一个主要因素,这是道路交通事故和捕捉此类违规事件的一个艰巨任务。现代物体探测框架和高性能硬件的进步为在视频监视方面采取更加自动化的方法铺平了道路;在这项工作中,我们提议使用一个经过专门训练的先进物体探测器,与路边摄像机合作,在不需要人手干预的情况下捕捉驾驶用电话。拟议方法还处理风屏玻璃引起的问题,并引入了纠正这一问题所需的步骤。12个预先训练的模型与我们的定制数据集进行了微调,使用了四种流行物体探测方法:YOLO、SSD、快速R-CNN和CentralNet。在所有测试的物体探测器中,YOLO产生的最高精确度为96%(AP10)和框架率高达~30FPS。深质物体跟踪算法也被纳入最佳模型,仅收集独特违规行为的记录,并使拟议的方法能够计算车辆数量。拟议的自动化系统将收集每部违反情况的数据,通过每次检索。