This study examines the varying coefficient model in tail index regression. The varying coefficient model is an efficient semiparametric model that avoids the curse of dimensionality when including large covariates in the model. In fact, the varying coefficient model is useful in mean, quantile, and other regressions. The tail index regression is not an exception. However, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function varies significantly with covariates. If the effect of the non-linearity is weak, the varying coefficient structure is reduced to a simpler model, such as a constant or zero. Accordingly, the hypothesis test for model assessment in the varying coefficient model has been discussed in mean and quantile regression. However, there are no results in tail index regression. In this study, we investigate asymptotic properties of an estimator and provide a hypothesis testing method for varying coefficient models for tail index regression.n.
翻译:本研究考察了尾部指数回归中不同的系数模型。 不同的系数模型是一种有效的半参数模型,在模型中包括大量的共变体,避免了维度的诅咒。 事实上, 不同的系数模型在平均值、 孔数和其他回归中有用。 尾部指数回归不是一个例外。 但是, 不同的系数模型是灵活的, 但对于应用来说更精细、 更简单的模型是首选的。 因此, 评估估计系数函数是否随共变而有很大差异很重要 。 如果非线性的影响很弱, 不同的系数结构会降为更简单的模型, 如常数或零。 因此, 不同系数模型评估的假设测试在平均值和孔数回归中讨论过。 但是, 尾部指数回归没有结果 。 在此研究中, 我们调查一个顶点的零位特性, 并为尾部指数回归提供一种不同的系数模型的假设测试方法。 n。