This paper develops a general causal inference method for treatment effects models with noisily measured confounders. The key feature is that a large set of noisy measurements are linked with the underlying latent confounders through an unknown, possibly nonlinear factor structure. The main building block is a local principal subspace approximation procedure that combines $K$-nearest neighbors matching and principal component analysis. Estimators of many causal parameters, including average treatment effects and counterfactual distributions, are constructed based on doubly-robust score functions. Large-sample properties of these estimators are established, which only require relatively mild conditions on the principal subspace approximation. The results are illustrated with an empirical application studying the effect of political connections on stock returns of financial firms, and a Monte Carlo experiment. The main technical and methodological results regarding the general local principal subspace approximation method may be of independent interest.


翻译:本文为治疗效果模型制定了一种总的因果推断方法,对治疗效果模型进行了认真测量,主要特征是,通过未知的、可能是非线性的因素结构,大量噪音测量与潜在的潜在混淆模型相联系。主要组成部分是当地主要的次空间近似程序,该程序结合了近邻最接近的美元和主要组成部分的匹配分析。许多因果参数,包括平均治疗效果和反事实分布的推算器,都是根据双重紫外线分数函数构建的。这些估计器的大型抽样特性已经建立,只需要主要次空间近差相对比较温和的条件。其结果通过实验应用加以说明,研究政治联系对金融公司股票回报的影响,以及蒙特卡洛实验。关于一般地方主要次空间接近方法的主要技术和方法结果可能具有独立的兴趣。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月18日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员