Causal Learner is a toolbox for learning causal structure and Markov blanket (MB) from data. It integrates functions for generating simulated Bayesian network data, a set of state-of-the-art global causal structure learning algorithms, a set of state-of-the-art local causal structure learning algorithms, a set of state-of-the-art MB learning algorithms, and functions for evaluating algorithms. The data generation part of Causal Learner is written in R, and the rest of Causal Learner is written in MATLAB. Causal Learner aims to provide researchers and practitioners with an open-source platform for causal learning from data and for the development and evaluation of new causal learning algorithms. The Causal Learner project is available at http://bigdata.ahu.edu.cn/causal-learner.


翻译:Causal Learninger是一个工具箱,用于从数据中学习因果结构和Markov 毯子(MB),整合生成模拟Bayesian网络数据的功能,一套最先进的全球因果结构学习算法,一套最先进的当地因果结构学习算法,一套最先进的MB学习算法,一套评估算法的功能。Causal Learner的数据生成部分用R书写,其余的Causal Learner则用MATLAB书写。Causal Learner的目的是为研究人员和从业人员提供一个开放源平台,从数据中获取因果学习,开发和评价新的因果学习算法。Causal Learner项目可在http://bigdata.ahu.edu.cn/causal-learner上查阅。

0
下载
关闭预览

相关内容

专知会员服务
97+阅读 · 2021年8月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
14+阅读 · 2020年12月17日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员