A new method is proposed for modelling the yearly maxima of sub-daily precipitation, with the aim of producing spatial maps of return level estimates. Yearly precipitation maxima are modelled using a Bayesian hierarchical model with a latent Gaussian field, with the blended generalised extreme value (bGEV) distribution used as a substitute for the more standard generalised extreme value (GEV) distribution. Inference is made less wasteful with a novel two-step procedure that performs separate modelling of the scale parameter of the bGEV distribution using peaks over threshold data. Fast inference is performed using integrated nested Laplace approximations (INLA) together with the stochastic partial differential equation (SPDE) approach, both implemented in R-INLA. Heuristics for improving the numerical stability of R-INLA with the GEV and bGEV distributions are also presented. The model is fitted to yearly maxima of sub-daily precipitation from the south of Norway, and is able to quickly produce high-resolution return level maps with uncertainty. The proposed two-step procedure provides an improved model fit over standard inference techniques when modelling the yearly maxima of sub-daily precipitation with the bGEV distribution.
翻译:提议采用一种新的方法来模拟亚日降水量的年度最大值,目的是制作回流水平估计的空间地图; 年降水量最高值采用贝叶西亚等级模型模型,带有潜高山场,混合的极端值(bGEV)分布,以替代更标准的通用极端值(GEV)分布; 推论减少浪费,采用新的两步程序,利用峰值超过阈值的数据对BGEV分布的尺度参数分别进行模拟; 使用综合的巢巢状拉普差近地(INLA)和Stochacific 部分差分方程(SPDE)方法进行快速推断; 拟议的两步程序在R-INLA中采用, 混合的极端值(bGEV) 分布,用于改善R-INLA与GEV和bGEV分布的数值稳定性。 该模型符合挪威南部每日次降水量的最大值,并能迅速制作具有不确定性的高分辨率返回水平的地图。 拟议的两步程序提供了改进模型,在模拟年度降水量水平上比标准更符合最高分配方法。