Higher-order processes with parameterization are capable of abstraction and application (migrated from the lambda-calculus), and thus are computationally more expressive. For the minimal higher-order concurrency, it is well-known that the strong bisimilarity (i.e., the strong bisimulation equality) is decidable in absence of parameterization. By contrast, whether the strong bisimilarity is still decidable for parameterized higher-order processes remains unclear. In this paper, we focus on this issue. There are basically two kinds of parameterization: one on names and the other on processes. We show that the strong bisimilarity is indeed decidable for higher-order processes equipped with both kinds of parameterization. Then we demonstrate how to adapt the decision approach to build an axiom system for the strong bisimilarity. On top of these results, we provide an algorithm for the bisimilarity checking.
翻译:具有参数化的较高顺序过程能够抽象和应用程序(从 lambda- calculs 中迁移出来), 因而在计算上更能表达。 对于最低较高顺序的共通货币, 众所周知, 强大的两极相似性( 强的双色等) 在没有参数化的情况下是可以分化的。 相反, 强大的双极性对于参数化较高顺序过程是否仍然可以分级还不清楚。 在本文中, 我们集中关注这个问题。 基本上有两种参数化类型: 一种在名称上, 另一种在过程上。 我们显示, 配备两种参数化的较高顺序进程确实可以分辨出强烈的两极性。 然后我们演示如何调整决策方法, 以构建强大的两极相似性。 除了这些结果之外, 我们为两个相似性检查提供了一种算法 。