This paper presents our solution to the Multimodal Personality-aware Depression Detection (MPDD) challenge at ACM MM 2025. We propose a multimodal depression detection model in the Elderly that incorporates personality characteristics. We introduce a multi-feature fusion approach based on a co-attention mechanism to effectively integrate LLDs, MFCCs, and Wav2Vec features in the audio modality. For the video modality, we combine representations extracted from OpenFace, ResNet, and DenseNet to construct a comprehensive visual feature set. Recognizing the critical role of personality in depression detection, we design an interaction module that captures the relationships between personality traits and multimodal features. Experimental results from the MPDD Elderly Depression Detection track demonstrate that our method significantly enhances performance, providing valuable insights for future research in multimodal depression detection among elderly populations.
翻译:暂无翻译