In this paper, we consider the numerical approximation for a diffuse interface model of the two-phase incompressible inductionless magnetohydrodynamics problem. This model consists of Cahn-Hilliard equations, Navier-Stokes equations and Poisson equation. We propose a linear and decoupled finite element method to solve this highly nonlinear and multi-physics system. For the time variable, the discretization is a combination of first-order Euler semi-implicit scheme, several first-order stabilization terms and implicit-explicit treatments for coupling terms. For the space variables, we adopt the finite element discretization, especially, we approximate the current density and electric potential by inf-sup stable face-volume mixed finite element pairs. With these techniques, the scheme only involves a sequence of decoupled linear equations to solve at each time step. We show that the scheme is provably mass-conservative, charge-conservative and unconditionally energy stable. Numerical experiments are performed to illustrate the features, accuracy and efficiency of the proposed scheme.
翻译:在本文中, 我们考虑的是两个阶段的分散界面模型的数值近似值。 这个模型由Cahn- Hilliard 等式、 Navier- Stokes 等式和 Poisson 等式组成。 我们提出一个线性和分离的有限元素方法来解决这个高度非线性和多物理学系统。 对于时间变量来说, 离散是第一级Euler 半隐性计划、 几个第一级稳定条件 和 隐含的混合条件处理 的组合。 对于空间变量, 我们采用有限元素离散, 特别是, 我们通过向上稳定面体的混合元素配对, 来比较当前密度和电能潜能。 有了这些技术, 这个方案只包含一个分解的线性方程式的序列, 在每个时间步骤中解开。 我们显示, 这个方案是可辨的大规模防腐蚀性、 电荷- 保守性和无条件的能源稳定性。 数量实验是用来说明拟议方案的特点、 准确性和效率的。