This paper proposed a storing approach for trie structures, called Coordinate Hash Trie. The basic idea is using a global hash table with a special hash function to store all edges of a trie. For a trie with $n$ nodes and an alphabet with size $m$, the execution time of finding, inserting and deleting a child node, is $O(1)$ for the average case, $O(m)$ for the worst case. The space used by this approach is $O(n)$, unrelated to $m$. The constant of space consumption is predictable, with no need for reallocation or resizing. In addition, this approach is very easy to implement.
翻译:本文建议对三角结构采用称为“协调哈斯特里”的储存办法,其基本想法是使用具有特殊散列功能的全球散列表储存三边的所有杂交。对于带有美元节点的三边和大小为百万美元的字母,查找、插入和删除子节点的执行时间平均为O(1)美元,最坏的情况为O(m)美元。这种方法所用的空间为O(n)美元,与百万美元无关。空间消费的常数是可预测的,不需要重新分配或调整大小。此外,这种方法很容易实施。</s>